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In three cases, one originating from a classical model, the second from the time- 
evolution operator, and the third from photocount statistics, it is shown that an 
initially excited coherent field which remains coherent in time development 
relaxes according to a hyperbolic rather than to an exponential law. This has 
particular relevance for the analysis of biological systems. 

1. INTRODUCTION 

It is well known that relaxing ergodic systems subject to a linear 
dependence of the intensities h upon the number of radiating atoms or 
molecules n display an exponential decay law n oc exp(-20 ,  where 2 is the 
decay constant and t the time. If the coupling becomes nonlinear, e.g., 
h oc n 2, it is obvious that a hyperbolic law of the form n oc l i t  then 
represents the corresponding solution of the problem. 

Many papers (Weisskopf and Wigner, 1931; Heitler and Ma, 1949; 
Ersak, 1969; Davies, 1975; Fonda et  al., 1978; Bunge and Kalnay, 1983; Li 
and Popp, 1983) have been devoted to the quantum description of 
exponential decay and its basic origins and problems. However, no 
investigation reveals the basis of the hyperbolic relaxation within the 
framework of quantum theory. 

In addition to a serniclassical approach (Li and Popp, 1983), three 
striking cases are analyzed here, in order to show that a hyperbolic relaxa- 
tion of an ergodic system is sufficient (but not necessary) for keeping its 
coherence, while an exponential one is necessary (but not sufficient) for a 
chaotic field. 
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2. A CLASSICAL MODEL 

Let us turn to the most simple case of an oscillator of amplitude x(t). 
Instead of a constant damping 2, we introduce more generally a time- 
dependent damping factor 2(t), requiring that the eigenfrequency coo of the 
system shall remain exactly constant under relaxation. 

Of course, the exponential relaxation is a consequence of a constant 
damping 2 which changes the eigenfrequency coo of the system to 
co = (co2_ 22)1/2. The damping energy is dissipated into heat. However, a 
constant eigenfrequency coo provides at the same time a constant degree of 
coherence in terms of the visibility of the interference fringes. Systems with 
constant eigen.frequency coo and combinations of them can communicate by 
means of frequency modulations independent on their amplitudes. Actually, 
by use of the equation 

.~(t) + 2~(t) .~(t) + coo~ x(t) = o (1) 

where 22(0 describes the time-dependent damping of the system, x(t) can 
be separated into an oscillating part y(t) that keeps the frequency coo stable 
and a decaying fraction e x p [ -  ~ 2(t) dt]: 

x(t)=exp[-f 2(t) y(t)dt] (2) 

After insertion of (2) into (1) we obtain 

j~+ (co~-,~2- ~) y = 0 (3) 

Stability of co o requires 

22= - ~  (4) 

The requirement that the frequency coo is independent of the changes of 
oscillator amplitude y is consistent with the classical coherence considera- 
tion by Schr6dinger (1926). 

The solution of equation (4) reads 

2(t) = (5) 
1 +20t 

where 20 is a constant. 
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Consequently, the solution of (1) takes, under the constraint of (5), 
the final form 

y(t) 
x(t) = (6) 

l + 2 o t  

where y(t) is periodic in time t with frequency co o. Equation (6) describes 
a hyperbolic relaxation behavior. 

3. TIME-EVOLUTION 

As Fonda et al. (1978) have shown, exponential decay is one of the 
possible consequences of the semigroup law 

A ( t l ) A ( t 2 ) = A ( t l + t 2 )  (7) 

of the time-evolution operator A( t )= e x p [ - ( i / h ) ~ '  H(t ' )d t ' ]  for chaotic 
fields. Actually, the solution of (7) is exponential: ( A ( t ) )  oc exp(--2t), 
where the real value of 2 follows from the unitarity of A(t) (Fonda et al., 
1978). Let us now start with the number of photons of a coherent field of 
amplitude ~cc~, where ~c represents a real parameter, for instance, a real func- 
tion of time, while c~ accounts for a complex function of time. 

Obviously we have 

n = K21~X[ 2 (8 )  

In terms of the displacement operator D(~cc~) (Glauber, 1963), equation (8) 
has to be rewritten as 

n = (Or D* (;cc~) a+aD (~cc~) JO) (9) 

where 10) is the vacuum state, and a +, a are the creation and annihilation 
operators, respectively. They are subject to 

[a, a +] = 1 lO) 

and a+a shall not explicitly depend on to. 
From (9) we obtain immediately 

6~-~=(0[ D * ( ~ )  a + a D ( ~ ) l O } + ( O I D * ( K ~ ) a + a  -~-~KD(;c~) ]0) 

(11) 
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Using Glauber's (1963) derivation 

a--~ D(~c~) = (~a + -- c~*a) O(~ce) 

(12) 

c~-~ D*(lco:) = D*(tco~)(~*a - cxa + ) 

we then get from (11 ) 

~n 
c3-~ = (01 D*0ccO[(~*a - o~a + ) a+ a + a + a(~a + -- c~*a)] D(tccO [05 (13) 

For ( o ~ * a - - o ~ a + ) a + a + a + a ( o ~ a + - ~ x * a )  we can write ~a++o~*a  on 
account of (10). Consequently 

~n 
c9---~ = (OI D*(xo~)(o~a + + o~*a) D(Fcoc) I05 (14) 

Mehta et al. (1967) have shown that a coherent state remains always 
coherent when the Hamiltonian Hc( t )  has the following form: 

H i l t )  = co(t)a+ a + [ f ( t ) a  + + f * ( t ) a ]  + [l(t) (15) 

where co(t) and /3(0 are arbitrary real functions of t, while f ( t )  is an 
arbitrary complex function of t. Any term on the r.h.s, of (15) accounts for 
the conservation of coherence. 

Consequently, we are free in choosing f i t )  for co r 0 such that 

f ( t ) a  + + f * ( t ) a  = co(t) g(t)(c~a + + c~*a) (16) 

After substitution of (15) into (14), by taking account of (16), we get 

c~n 1 

a~ ~(t) ~(t) 
(01D*(tc~){ [H, . ( t ) -  fl(t)] - co( t )a+a}  D(lc~) 10) (17) 

where we have as well on the 1.h.s. as on the r.h.s, of (17) only real 
functions. Since 

( 0 1 D * ( ~ ) [ H f i t ) - - f i ( t ) ]  D(~cct) [0} e , , ( t ) - f i ( t ) n ( t )  
n( t )  

where e,~(t)= ( ~ 1  H e ( t ) [ ~ } ,  equation (17) can be written as 

~n 

01c 
1 F~ , , (Q-  fi(t) 

~(t) co(t) l_ n(t) 
co(t)] (0[ D*(Ka) a + a  D(~c~) I0) 

1 
7(t)  n( t )  (18) 
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We are not completely free in the choice of 7(t). Of course, the ergodicity 
condition requires that the ensemble average ( n ( D )  at any ins tan t /equa ls  
the time average according to 

(n ( [ ) )  = lira 1 ~;+,~ n(t) dt (19) 
t l , t2~oo l l - ~  l 2 ,J [ _ t l  

(19) holds obviously for a stationary field ( n ( D ) =  const for any tl and t2. 
Let us provide that (19) shall be fulfilled also for the relaxing coherent field 
after excitation, n shall be a function of t only, which means that we can 
make the special choice K= t + t  1 in (18), in order to evaluate the decay 
kinetics ~n/&c =- ~n/~Ft = dn/dt under the condition (19). 

After insertion of (18) into (19) and taking dK = dt, we then have 

= - ~ ( t )  a t  ( 2 0 )  
tl,t2 ~ ~ 1 7 6  l l  + t2 --tl 

After integration by parts we obtain 

1 t-+ t 2 ( n ( [ ) ) =  - lim - -  [7( t )n( t )] i_ , ,  
t l , t 2 ~ c c  t l + t  2 

(21) 
,1,t2~ o. t t + t-----2_ _,~ d-t 

Since (n ( { ) )  shall not depend on the special choice of t 1, t2 even if t 1, t z 
remain finite, the solution of ?(t) has to satisfy the condition 

[ 7 ( 0  n( t ) ]  i+'~ - { tl-- {7(t)n(t)}i+tz--  {7(t) n(t)}i-t~ = 0  (22) 

The equality of (21) and (19) at any tx and t2 requires then 

dr 1 
dt 

o r  

y( t )= t + to= • + ( t o -  tl) (23) 

where to and t I are arbitrary constant times. 
Consequently, for an ergodic field, the relaxation of n(t) after excita- 

tion satisfies condition (18) under the constraint of (19): 

&(t)  1 
n(t) (24) 

dt t + to 
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Equation (24) results in a hyperbolic relaxation 

n(0) to 
n(t) = (25) 

t +  t o 

where n(0) is the photon number at time t = 0. The condition 

[7(0 . ( t ) ]  ~+~ '~ - o t l - -  

according to (22) is as well satisfied. Thus, the solution is self-consistent. 
Equation (25) is sufficient for coherent relaxation under ergodic condi- 

tions, since the selection of a special case [-defined by (19) and the choice 
= t + to] from a collection of possible cases which do not overlap with 

chaotic (exponential) relaxation involves a sufficient but certainly not a 
necessary condition. This means that if a hyperbolic relaxation under 
ergodic conditions has been registered, the decay products can originate 
only from a fully coherent field, while the measurement of an exponential 
decay function cannot necessarily be assigned to a chaotic field. On the 
other hand, a chaotic field which is an eigenstate of a+a under ergodic con- 
ditions always decays according to an exponential function (Fonda et al., 
1978). 

It should be mentioned that in contrast to the classical oscillator for 
this solution it is no longer necessary to keep the frequency constant. 

In (24) the real time t can be assigned to the coherence time z. As long 
as the relaxation of a fully coherent field takes place, there is no difference 
between ~ and the real time t, while for a chaotic field t + to on the r.h.s. 
of (24) has to be replaced by the reciprocal of the decay constant (Popp, 
1986). 

In order to show that (25) reflects a limiting case like that of the 
equality in case of the Schwartz inequality equation, let us briefly discuss 
the semigroup law (7). It can be formulated under the constraint of a fully 
coherent field in such a way that again a hyperbolic law is obtained. 

Of course, if equation (7) is replaced by 

A(tl) A(tz) = A -~ [A(t , )  + A(t2)] (26) 

the exponential solution turns for t l ~  t2 into the hyperbolic A(t)=c/t ,  
where c is a constant: 

t~ t2 
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Because of 

the change from (7) to (26) corresponds to the substitution of 

A = ~ [A(tl) + A(t2)] (28) 

By use of the identities 

A ( ~ - ~ ) =  [A(tl + t2)]i/2= [A(tl) A(t2)] 1/2 

we can see from (28) that the geometrical mean [A(tl)A(t2)] ~/2 has then 
1 to be substituted by its arithmetric mean ~ [A( t l )+  A(t2)] in order to turn 

from (7) to (26). This reminds us again of the ergodicity condition. Of 
course, the average value [= (t~ + t2)/2 can always be fixed, while t~ and t~ 
may take arbitrary values. Consequently, (28) can be interpreted as an 
adjustment in such a way that the ensemble average at a definite time 
t = (t~ + t2)/2 equals its timeaverage. 

By the way, this includes also the case of "destructive interference." Of 
course, since the displacement operator D(,/(t)) represents A(t) in the 
coherent-state representation, the replacement of 

D(0) = I-D(7) D(-7)] ~/2 

by its arithmetic mean �89 [ 0 ( 7 ) D ( - 7 ) ]  provides that the vacuum state will 
be obtained if the field amplitudes 7 and - 7  are superimposed within the 
coherence volume. This perfect coherence indicates again that the hyper- 
bolic relaxation is sufficient for a fully coherent ergodic field. 

4. PHOTOCOUNT STATISTICS (PCS) 

The following proof of hyperbolic relaxation for a fully coherent 
ergodic field is based on the well-known fact that a fully coherent station- 
ary field displays always a Poissonian distribution of the probability 
p(n, At) of registering n photons in an arbitrarily small, but fixed time 
interval At. A chaotic field, on the other hand, follows a geometrical dis- 
tribution ofp(n, At). Ifp(n, At) remains Poissonian at any instant t, where 
the probability distribution shall generally account for an ensemble of iden- 
tical samples, it is evident that this is then sufficient for a fully coherent 
ergodic field, even if it is not stationary. 
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Following L o u d o n  (1983), we introduce the probabil i ty p(t)dt  of 
registering a particle of the decay product  (for instance, a photon) ,  
originating from a relaxing field, within a small time interval between t and 
t + dt. The measurement  of the number  of particles {f iT)  is always perfor- 
med within the fixed time interval t and t + T, where T > d t  (see Fig. 1 ). 

According to Loudon,  we have generally the relation 

Po(t, T )=exp  [ - ; t ' +  Tp(t') dt ' l  (29) 

where P0(t, T) is the probabil i ty of registering no pho ton  in the interval t 
and t + T. At any instant t, Po is normalized:  Po(t, 0) = 1. The probabil i ty 
of measuring no pho ton  between t' and t' + dt' is then [see L o u d o n  (1983) 
or expand the r.h.s, of (29)]  

Po(t', dt ')= 1 -p ( t ' )  dt' (30) 

"-- I , 1 

I 
I 
I 

t 1 t I+T t 2 t2+T t imer  

t f t'+ dr' f+T 
Fig. 1. A typical relaxation of an excited field, where the intensity h(t) decays. The number of 
particles of the decay product (fiT) is always registered between time intervals ti and ti+ T, 
i = 1, 2 ..... These intervals can be divided into smaller ones t~ and tj + dr', j = 1, 2,..., N, where 
either no particle or only one can be counted. 
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An ergodic coherent field displays (in contrast to chaotic fields) no bunch- 
ing. This means that the probability of registering no photon within t and 
t + T is, according to the probability theory of independent processes, the 
product of all the N single probabilities [ I - p ( t ' )  dt'] of measuring no 
photon in the consecutive small time intervals dt' between t and t + T, 
where N dt'= T (see Fig. 1): 

Po(t, T)= L1 -p(t]) dt'][1 -p(t'2) dt']... [1 --p(tN) dt'3 (31) 

Since the [1 -p(t;) dt'] for i =  1, 2 ..... N are positive real numbers, we then 
have 

{~ii ) 1IN 1 1-p(t')ac<. ~l-p(,;)ac31 <.l-~Zp(t;Idc (32) 

where p(t'~) represents the maximum of p(t') within t and t +  T. (32) 
reflects the fact that the geometrical mean is always lower than or at most 
equal to the arithmetric mean. According to the mean value theorem, we 
then can rewrite (31), taking account of (32), as 

Po(t, T)=II-p(t+#T)TtN (33) 

where dt = T/N, and # with 0 ~</~ ~< 1 is a time-independent quantity, since 
within the interval T the measurements do not allow the time resolution of 
~(t): 

Consequently, from equations (29) and (33), we get 

I I -p(t + itT) T;N=exp [ -  f'+ Tp(t') dt '] (34) 

The nonstationary solution for/~ = 1 takes the form 

N p(t) = (35) 
t +  t o 

where to is a constant. The special choice of IL = 1 cannot have any impact 
on the physical significance, since T is optional. (35) represents again a 
hyperbolic law. 

We may conclude as follows: If a relaxing field keeps its Poissonian 
PCS-distribution at any instant, it decays according to a hyperbolic law. If, 
on the other hand, an ergodic field relaxes according to a hyperbolic func- 
tion, one has to conclude that the field is a fully coherent one. 
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Fig. 2. "Delayed luminescense" of a Bryophyllum daigremontanum leaf at a wavelength of 
676+_10nm (Popp et aL, 1981). The measured count rate after exposure to a red-light 
illumination can be approximated by a hyperbolic decay law according to equation (20) 
(lower curve), while an exponential decay (dashed line), or even a superposition of three 
exponential functions with different decay constants cannot be adjusted. 

This hyperbolic relaxation seems to be a rather common phenomenon 
in biological systems, e.g., the white-light-induced reemission of photons 
from cells (Scholz etal . ,  1988) and living tissues (Popp et at., t981). 

Figure 2 demonstrates this for the spectral reemission of a leaf of the 
plant Bryophyllum daigremontanum after illumination with red light of a 
wavelength of 6 7 6 + 1 0 n m .  The exponential function (dashed line) 
evidently cannot account for this decay, but the result clearly indicates 
coherent rescattering of light within living systems. This has also been 
indicated by "light-piping in plant tissues" (Mandoli  and Briggs, 1982), 
which has been traced back to a high degree of coherence (Smith, 1982). 

Hyperbolic relaxation may thus become a powerful tool for analyzing 
the living state in terms of coherence (Popp, 1986). This has been confir- 
med also by use of canonical coherent states in order to describe the long- 
range forces between human blood cells (Paul, 1983) and the long-range 
phase coherence in the bacteriorhodopsin macromolecules (Dunne et at., 
1983). 
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